Access to Science, Engineering and Agriculture: Mathematics 1

## MATH00030

Chapter 6 Solutions

1. (a)

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{4(x+h)-4 x}{h} \\
& =\lim _{h \rightarrow 0} \frac{4 x+4 h-4 x}{h} \\
& =\lim _{h \rightarrow 0} \frac{4 h}{h} \\
& =\lim _{h \rightarrow 0} 4 \\
& =4 .
\end{aligned}
$$

(b)

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{5(x+h)^{2}-5 x^{2}}{h} \\
& =\lim _{h \rightarrow 0} \frac{5\left(x^{2}+2 x h+h^{2}\right)-5 x^{2}}{h} \\
& =\lim _{h \rightarrow 0} \frac{5 x^{2}+10 x h+5 h^{2}-5 x^{2}}{h} \\
& =\lim _{h \rightarrow 0} \frac{10 x h+5 h^{2}}{h} \\
& =\lim _{h \rightarrow 0} 10 x+5 h \\
& =10 x .
\end{aligned}
$$

(c)

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{-3(x+h)+2-(-3 x+2)}{h} \\
& =\lim _{h \rightarrow 0} \frac{-3 x-3 h+2+3 x-2}{h} \\
& =\lim _{h \rightarrow 0} \frac{-3 h}{h} \\
& =\lim _{h \rightarrow 0}-3 \\
& =-3 .
\end{aligned}
$$

(d)

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{4(x+h)^{2}-5-\left(4 x^{2}-5\right)}{h} \\
& =\lim _{h \rightarrow 0} \frac{4\left(x^{2}+2 x h+h^{2}\right)-5-\left(4 x^{2}-5\right)}{h} \\
& =\lim _{h \rightarrow 0} \frac{4 x^{2}+8 x h+4 h^{2}-5-4 x^{2}+5}{h} \\
& =\lim _{h \rightarrow 0} \frac{8 x h+4 h^{2}}{h} \\
& =\lim _{h \rightarrow 0} 8 x+4 h \\
& =8 x .
\end{aligned}
$$

(e)

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{-(x+h)^{2}+2(x+h)+3-\left(-x^{2}+2 x+3\right)}{h} \\
& =\lim _{h \rightarrow 0} \frac{-\left(x^{2}+2 x h+h^{2}\right)+2(x+h)+3-\left(-x^{2}+2 x+3\right)}{h} \\
& =\lim _{h \rightarrow 0} \frac{-x^{2}-2 x h-h^{2}+2 x+2 h+3+x^{2}-2 x-3}{h} \\
& =\lim _{h \rightarrow 0} \frac{-2 x h-h^{2}+2 h}{h} \\
& =\lim _{h \rightarrow 0}-2 x-h+2 \\
& =-2 x+2 .
\end{aligned}
$$

2. (a) Since $f(x)=5$ is a constant, $f^{\prime}(x)=0$.
(b) Since $f(x)=-\pi \cos (e)$ is a constant, $f^{\prime}(x)=0$.
(c) Here $f$ is of the form $f(x)=x^{n}$, with $n=2$.

Thus $f^{\prime}(x)=2 x^{2-1}=2 x^{1}=2 x$.
(d) Here $f$ is of the form $f(x)=x^{n}$, with $n=\frac{9}{2}$.

Thus $f^{\prime}(x)=\frac{9}{2} x^{\frac{9}{2}-1}=\frac{9}{2} x^{\frac{7}{2}}$.
(e) Here $f$ is of the form $f(x)=x^{n}$, with $n=-5$.

Thus $f^{\prime}(x)=-5 x^{-5-1}=-5 x^{-6}$.
(f) Here $f$ is of the form $f(x)=x^{n}$, with $n=\cos (2)$.

Thus $f^{\prime}(x)=\cos (2) x^{\cos (2)-1}$.
(g) Here $f$ is of the form $f(x)=e^{a x}$, with $a=4$.

Thus $f^{\prime}(x)=4 e^{4 x}$.
(h) Here $f$ is of the form $f(x)=e^{a x}$, with $a=\frac{3}{2}$.

Thus $f^{\prime}(x)=\frac{3}{2} e^{\frac{3}{2} x}$.
(i) Here $f$ is of the form $f(x)=e^{a x}$, with $a=-6$.

Thus $f^{\prime}(x)=-6 e^{-6 x}$.
(j) Here $f$ is of the form $f(x)=e^{a x}$, with $a=\pi$.

Thus $f^{\prime}(x)=\pi e^{\pi x}$.
(k) Here $f$ is of the form $f(x)=\ln (a x)$, with $a=4$.

Thus $f^{\prime}(x)=\frac{1}{x}$.
(l) Here $f$ is of the form $f(x)=\ln (a x)$, with $a=-\pi$.

Thus $f^{\prime}(x)=\frac{1}{x}$.
(m) Here $f$ is of the form $f(x)=\ln (a x)$, with $a=\frac{1}{2}$.

Thus $f^{\prime}(x)=\frac{1}{x}$.
(n) Here $f$ is of the form $f(x)=\sin (a x)$, with $a=2$.

Thus $f^{\prime}(x)=2 \cos (2 x)$.
(o) Here $f$ is of the form $f(x)=\sin (a x)$, with $a=-2$.

Thus $f^{\prime}(x)=-2 \cos (-2 x)$.
(p) Here $f$ is of the form $f(x)=\sin (a x)$, with $a=e$.

Thus $f^{\prime}(x)=e \cos (e x)$.
(q) Here $f$ is of the form $f(x)=\cos (a x)$, with $a=3$.

Thus $f^{\prime}(x)=-3 \sin (3 x)$.
(r) Here $f$ is of the form $f(x)=\cos (a x)$, with $a=-3$.

Thus $f^{\prime}(x)=-(-3) \sin (-3 x)=3 \sin (-3 x)$.
(s) Here $f$ is of the form $f(x)=\cos (a x)$, with $a=-\pi$.

Thus $f^{\prime}(x)=-(-\pi) \sin (-\pi x)=\pi \sin (-\pi x)$.
3. (a) Using the sum and multiple rules,

$$
\begin{aligned}
f^{\prime}(x) & =\frac{d}{d x}(1)+\frac{d}{d x}(3 x)+\frac{d}{d x}\left(-2 x^{2}\right)+\frac{d}{d x}\left(3 x^{3}\right)+\frac{d}{d x}\left(-4 x^{4}\right) \\
& =\frac{d}{d x}(1)+3 \frac{d}{d x}(x)-2 \frac{d}{d x}\left(x^{2}\right)+3 \frac{d}{d x}\left(x^{3}\right)-4 \frac{d}{d x}\left(x^{4}\right) \\
& =0+3(1)-2(2 x)+3\left(3 x^{2}\right)-4\left(4 x^{3}\right) \\
& =3-4 x+9 x^{2}-16 x^{3} .
\end{aligned}
$$

Note that in your assignment or exam solutions you don't need to give as much detail as this. I am just setting out everything carefully until you get used to the ideas involved.
(b) Using the sum and multiple rules,

$$
\begin{aligned}
f^{\prime}(x) & =\frac{d}{d x}\left(-x^{-1}\right)+\frac{d}{d x}(2 \sin 4 x) \\
& =-\frac{d}{d x}\left(x^{-1}\right)+2 \frac{d}{d x}(\sin 4 x) \\
& =-\left(-x^{-2}\right)+2(4 \cos (4 x)) \\
& =x^{-2}+8 \cos (4 x) .
\end{aligned}
$$

(c) Using the sum and multiple rules,

$$
\begin{aligned}
f^{\prime}(x) & =\frac{d}{d x}\left(3 e^{-\frac{1}{2} x}\right)+\frac{d}{d x}\left(-2 \cos \left(\frac{1}{2} x\right)\right) \\
& =3 \frac{d}{d x}\left(e^{-\frac{1}{2} x}\right)-2 \frac{d}{d x}\left(\cos \left(\frac{1}{2} x\right)\right) \\
& =3\left(-\frac{1}{2} e^{-\frac{1}{2} x}\right)-2\left(-\frac{1}{2} \sin \left(\frac{1}{2} x\right)\right) \\
& =-\frac{3}{2} e^{-\frac{1}{2} x}+\sin \left(\frac{1}{2} x\right) .
\end{aligned}
$$

(d) Using the sum and multiple rules,

$$
\begin{aligned}
f^{\prime}(x) & =\frac{d}{d x}(2 \ln (-x))+\frac{d}{d x}(4 \cos (-3 x))+\frac{d}{d x}\left(-e^{-\frac{3}{2} x}\right) \\
& =2 \frac{d}{d x}(\ln (-x))+4 \frac{d}{d x}(\cos (-3 x))-\frac{d}{d x}\left(e^{-\frac{3}{2} x}\right) \\
& =2\left(\frac{1}{x}\right)+4(3 \sin (-3 x))-\left(-\frac{3}{2} e^{-\frac{3}{2} x}\right) \\
& =\frac{2}{x}+12 \sin (-3 x)+\frac{3}{2} e^{-\frac{3}{2} x} .
\end{aligned}
$$

(e) Using the sum and multiple rules,

$$
\begin{aligned}
f^{\prime}(x) & =\frac{d}{d x}\left(-2 x^{2}\right)+\frac{d}{d x}(3 \ln (3 x))+\frac{d}{d x}\left(e^{\cos (1) x}\right) \\
& =-2 \frac{d}{d x}\left(x^{2}\right)+3 \frac{d}{d x}(\ln (3 x))+\frac{d}{d x}\left(e^{\cos (1) x}\right) \\
& =-2(2 x)+3\left(\frac{1}{x}\right)+\cos (1) e^{\cos (1) x} \\
& =-4 x+\frac{3}{x}+\cos (1) e^{\cos (1) x} .
\end{aligned}
$$

(f) Using the sum and multiple rules,

$$
\begin{aligned}
f^{\prime}(x) & =\frac{d}{d x}(2 \sin (3 x))+\frac{d}{d x}(-3 \sin (2 x))+\frac{d}{d x}(2 \cos (3 x))+\frac{d}{d x}(-3 \cos (2 x)) \\
& =2 \frac{d}{d x}(\sin (3 x))-3 \frac{d}{d x}(\sin (2 x))+2 \frac{d}{d x}(\cos (3 x))-3 \frac{d}{d x}(\cos (2 x)) \\
& =2(3 \cos (3 x))-3(2 \cos (2 x))+2(-3 \sin (3 x))-3(-2 \sin (2 x)) \\
& =6 \cos (3 x)-6 \cos (2 x)-6 \sin (3 x)+6 \sin (2 x) \\
& =6(\cos (3 x)-\cos (2 x)-\sin (3 x)+\sin (2 x)) .
\end{aligned}
$$

(g) Using the sum rule,

$$
f^{\prime}(x)=\frac{d}{d x}\left(e^{2}-4\right)+\frac{d}{d x}\left(e^{2 x}\right)=0+2 e^{2 x}=2 e^{2 x}
$$

Note that here we didn't need the multiple rule and also we were able to deal with the two terms $e^{2}$ and -4 all at once since $e^{2}-4$ is just a constant.
(h) Using the sum and multiple rules,

$$
\begin{aligned}
f^{\prime}(x) & =\frac{d}{d x}\left(-3 x^{-3}\right)+\frac{d}{d x}\left(4 x^{4}\right)+\frac{d}{d x}\left(5 x^{-5}\right)+\frac{d}{d x}(3) \\
& =-3 \frac{d}{d x}\left(x^{-3}\right)+4 \frac{d}{d x}\left(x^{4}\right)+5 \frac{d}{d x}\left(x^{-5}\right)+\frac{d}{d x}(3) \\
& =-3\left(-3 x^{-4}\right)+4\left(4 x^{3}\right)+5\left(-5 x^{-6}\right)+0 \\
& =9 x^{-4}+16 x^{3}-25 x^{-6} .
\end{aligned}
$$

Note that $3 x^{0}$ is just the number 3 (unless $x=0$ when $x^{0}$ is not defined), so it differentiates to zero. We could also obtain the derivative as $3\left(0 x^{-1}\right)=0$ but it would be a bit more work.

